

MMU - 1600D

Malfunction Management Unit

- Operates in Type 16 or Type 12 mode
- Meets and/or exceeds all NEMA TS 2 specifications (NEMATS 1 compatible – Type 12 operation)
- Advanced diagnostic features isolate problems
- 77 front panel LEDs provide a clear, concise, real-time indication of the status of all channel inputs and fault conditions
- Unique Diagnostic Display mode that allows viewing of the line voltage, configuration information, program card settings, and the last 20 faults right on the front of the monitor, while it is still in operation
- Event logging provides a detailed, time-stamped record of time changes, monitor resets, configuration changes, prior faults, AC line voltages, and signal sequence data
- The most advance Flashing Yellow Arrow Left Turn monitoring available in the industry
- LED signal head thresholds provide enhanced monitoring for LED indications
- Front panel mounted RS-232 Communications Port facilitates in-field firmware upgrades and access to stored logs
- Optional Ethernet support This option can be added after the initial purchase
- Upgradeable The monitor can be upgraded to the graphics version (MMU-1600G)
- 28 front panel mounted DIP switches allow for easy configuration of Field Check / Dual Enables and the selection of options
- All configuration data can be stored on a Reno A&E Program Card and can be copied from monitor to monitor
- Canadian Flashing Green Monitoring version available

The Model MMU-1600D Malfunction Management Unit is a fully featured unit that monitors up to 16 traffic signal channels for conflicting inputs, improper sequencing, incorrect timing, and invalid voltage levels. The MMU-1600D is fully compliant with NEMA Standard TS 2-2003. The MMU-1600D can operate in either Type 16 mode (sixteen channels) or Type 12 mode (twelve channels). When configured to operate in Type 12 mode, the unit is downward compatible with NEMA Standard TS 1-1989.

MMU - 1600D Enhanced Features

The following is a list of features included in Reno A&E's Model MMU-1600D Malfunction Management Unit which enhance the safety and operation of the unit. These features extend the operational capabilities of the MMU-1600 beyond the requirements set forth in NEMA Standards Publication TS 2-2003.

Hardware Features: The MMU-1600D unit incorporates a 16-bit microprocessor as the main processing unit, a digital signal processor (DSP), and two micro-controllers. The main microprocessor can be upgraded via the front panel RS-232 port. The DSP and the micro-controllers are flash based and can be programmed in circuit.

One of the micro-controllers is dedicated to monitoring diagnostic signals from the DSP and the main microprocessor. This micro-controller holds the main processor in the reset state until the AC Line voltage and all supply voltages have been verified as being within operational ranges.

The MMU is entirely connectorized internally with the exception of the two wires to the front panel fuse and an earth ground wire. This makes the MMU very easy to assemble and maintain. The possibility of wiring errors within the unit has been eliminated.

The MMU has an internal buzzer that indicates when the main processor is not running. This will only occur very briefly during power up, 1.5 seconds after loss of AC power, and during major diagnostic failures.

Upgrade-ability: Due to the modular design of the MMU-1600D, the monitor can be upgraded by the factory after initial purchase. There are currently two upgrades that are available: an Ethernet port and/or a Graphics Display.

The Ethernet port can be ordered with the original unit or added after the original purchase. The Graphics Display is an after the purchase upgrade.

Ethernet Port: The monitor supports an optional 10/100 Ethernet port. This port can be used simultaneously with the front panel RS-232 port. The Ethernet port is read-only when the monitor powers up. In order to write data through the Ethernet port, the reset button must be pressed and released. This action will cause the Ethernet port to be read-write for the next 15 minutes. This read-only function ensures that data in the monitor cannot be changed without someone physically being at the location of the monitor. This ensures that the IP address is correct and that changes cannot be implemented without physical access to the monitor.

Dual Indication Monitoring: This monitoring feature detects simultaneously active inputs of Green (Walk), Yellow, or Red (Don't Walk) on the same channel. A set of switches on the front panel labeled FIELD CHECK / DUAL ENABLES is provided to allow Dual Indication monitoring to be enabled on a per channel basis.

Type 12 – When the MMU is operating in this mode; Dual Indication monitoring detects simultaneously active inputs of Green and Yellow, Green and Red, Yellow and Red, Walk and Yellow, or Walk and Red on the same channel. When any two inputs of a channel are sensed as active for more than 1000 milliseconds, the MMU transfers the Output relay contacts to the fault condition and illuminates the DUAL IND indicator.

Type 16 – When the MMU is operating in this mode; Dual Indication monitoring detects simultaneously active inputs of Green and Yellow, Green and Red, or Yellow and Red on the same channel. When any two inputs of a channel are sensed as active for more than 1000 milliseconds, the MMU transfers the Output relay contacts to the fault condition, illuminates the DUAL IND indicator, and sets the Spare Bit #2 bit (bit 68) of the Type 129 Frame to 1.

Dual Indication monitoring is disabled when the Red Enable input is not active or if the Load Switch Flash bit (bit 112) of the Type 0 Frame is set to 1.

The MMU remains in this fault condition until the unit is reset by the activation of the front panel reset switch or the activation of the Reset input. An MMU Power Failure does not reset the MMU when it has been triggered by detection of Dual Indications on a channel prior to the MMU Power Failure.

GY-Dual Indication Monitoring: This monitoring function detects simultaneously active inputs of Green and Yellow field signal inputs on the same channel. When the Green and Yellow inputs of a channel are sensed as active for more than 1000 msec the MMU transfers the Output relay contacts to the fault condition, illuminates the DUAL IND indicator, and sets the Spare Bit #2 bit (bit 68) of the Type 129 Frame to 1.

The MMU remains in this fault condition until the unit is reset by the activation of the front panel reset switch or the activation of the Reset input. An MMU Power Failure does not reset the MMU when it has been triggered by detection of GYDual Indications on a channel prior to the MMU Power Failure. GYDual Indication Monitoring may be enabled concurrently with Dual Indication Monitoring.

GY-Dual Indication Monitoring is enabled by the use of the front panel option switch labeled GY ENABLE. When the GY-Dual Indication Monitoring option is enabled, all channels which have the front panel FIELD CHECK/DUAL ENABLE switches set to OFF will be individually monitored for simultaneously active Green and Yellow inputs. All channels that have the front panel FIELD CHECK/DUAL ENABLE switches set to ON will function as described above in Dual Indication Monitoring.

GY-Dual Indication monitoring is disabled when the Red Enable input is not active or if the Load Switch Flash bit (bit 112) of the Type 0 Frame is set to 1.

Field Check Monitoring: This monitoring function combines information about active field inputs with information received through the Port 1 communications between the Controller Unit and the MMU in a TS2 Cabinet Assembly. The MMU will receive a Type 0 Frame from the Controller Unit (Type 1 or Type 2 CU) that contains an image of the controller output commands to the load switches.

When the field signal input states detected as active or inactive by the MMU do not correspond with the information received from the Controller Unit in the Type 0 Frame for 10 consecutive 100 millisecond periods, the MMU will enter the fault mode, transfer the Output relay contacts to the Fault position, illuminate the FIELD CHK indicator, and set the Spare Bit #1 bit (bit 67) of the Type 129 Frame to 1.The MMU remains in this fault condition until the unit is reset by the activation of the front panel reset switch or the activation of the Reset input. An MMU Power Failure does not reset the MMU when it has been triggered by detection of Field Check fault prior to the MMU Power Failure. Field Check Monitoring is enabled concurrently with Dual Indication Monitoring.

Field Check Monitoring is enabled for each channel, individually, through the use of front panel switches labeled FIELD CHECK / DUAL ENABLES. Field Check Monitoring is disabled when the RED ENABLE input is not active.

LED Thresholds: The monitor can use the standard incandescent field display thresholds or enhanced LED field display thresholds. The monitor normally uses 15 VAC as off and 25 VAC as on for Green, Yellow, and Walk displays and uses 50 VAC as off and 70 VAC as on for Red displays. With the LED thresholds active, the monitor uses the same voltage thresholds for Conflict, Dual Indication, and Field Check the monitor uses 15 VAC as off and 25 VAC as on. For Red Fail, Short Yellow, and Short Clearance the monitor uses 50 VAC as off and 70 VAC as on.

Flashing Yellow Arrow Left Turn Monitoring: The monitor supports four section Flashing Yellow Arrow (FYA) left turn displays. Faults monitored for include: Dual Indication, Red Fail, Flashing Yellow Arrow must flash, and a solid Yellow Arrow terminating a Green Arrow must conflict with the opposing through Green and Yellow. Reno A&E monitors provide the most flexible and advanced Flashing Yellow Arrow Left Turn monitoring capabilities available in the industry.

Display LED Test: All of the LEDs on the front panel can be illuminated by pressing the front panel reset switch or activating the Reset input. When the reset switch is pressed or the Reset input activated, all of the LEDs will illuminate for 300 milliseconds. This allows the user to insure that all displays are functioning correctly.

12 Volt DC Monitoring: This feature converts the +24V Monitor II (Connector B - pin "R") to a +12V Monitor. This feature can be very useful in TS2 cabinets with 12 VDC supplies. The MMU can now monitor a +12VDC supply as well as a +24 VDC supply. The operation of the input is the same as if it were the +24V Monitor II; only the voltage levels are changed.

A voltage greater than +11.5 volts DC applied to the +24 Volt Monitor II input is recognized by the MMU as adequate for proper operation of the CA. A voltage of less than +10.75 volts DC applied to the +24 Volt Monitor II input is recognized by the MMU as inadequate for proper operation of the CA.

When the +24 Volt Monitor II input is detected as inadequate for more than 175 milliseconds, the MMU transfers the Output relay contacts to the fault condition and sets the +24 Volt Monitor II bit (bit 59) of the Type 129 Frame to 1. The time interval between the beginning of the inadequate voltage level and the transfer of the Output relay contacts to the fault condition does not exceed 450 milliseconds.

Restoration of proper voltage level resets the +24V Monitor II portion of the MMU. A failure during the programmed Minimum Flash time or during an MMU Power Failure does not cause a fault condition.

A method of programming is provided on the programming card to cause the +24 volt DC failures to latch in the fault condition until the unit is reset by the activation of the front panel reset switch or activation of the Reset input. This also applies when the +24V Monitor II input has been converted to a +12V Monitor. A latched +12 volt DC failure is not reset by an MMU Power Failure.

Application of a True (Low) state to the +24V Monitor Inhibit input inhibits the operation of the +12 Volt Monitor.

This monitoring function is enabled by a front panel option switch labeled CONVERT 24V-2 TO 12VDC.

Modified CVM Latch: This feature is useful in cabinets where the CVM input may not always be valid within the programmed Minimum Flash time and where latched CVM failures is desired. In the modified mode of operation, the MMU will not latch a CVM failure until the CVM input has been valid for more than 175 milliseconds.

This function is enabled by a front panel option switch labeled MODIFIED CVM LATCH. This feature only has an effect if the CVM Latch jumper is installed on the programming card.

Type 16 Only Mode: This feature is useful in cabinets where the user is retrofitting a TS 2 monitor into a TS 1 cabinet and wants to use the Type 16 mode, but the existing Connector A harness does not have a wire for pin "HH" (Type Select). Activating this feature forces the MMU to operate in the Type 16 mode regardless of the logic level on the Type Select input. While this feature is on, the TYPE 12 LED will show the Function Disabled indication (50 milliseconds on, once every two seconds).

