Signal Monitor Bench Test Power Cable

The following is the instructions on how to make a Signal Monitor Bench Test Power Cable.

Parts needed:

- Amphenol A71-627118-55P-ND
- DB-15 male connector
- Power cord
- Wire and wire nuts

Step 1:

Take the Amphenol A71-627118-55P-ND and solder the power cord to the pins shown in Table 1.

Table 1

Pin		Connect
1 111	Function	То
Α	AC Line	AC Line
		AC
V	AC Neutral	Neutral
		Earth
U	Earth Ground	Ground

Table 2

T	Logic Ground	
		Logic Ground
n	+24V Monitor Inhibit	Ground
	Controller Voltage	Logic
m	Monitor	Ground
		Logic Ground
HH	Type Select	Ground

Step 2:

Solder a wire to each pin shown in Table 2 and wire nut them together. This applies a logic TRUE (low) state to this input of the +24V Monitor Inhibit, Controller Voltage Monitor, and Type Select. If you do not apply a logic TRUE (low) state to these inputs the monitor will go to a failed state.

Once you have completed steps 1 and 2, you will be able to power up the monitor.

Signal Monitor Bench Test Power Cable

The monitor will show a **PORT 1 FAIL** and no field status will be shown on the (2) lower liquid crystal displays (R Y G), however, you will be able to go thru the **Status** and **Menu** Screens. To override the **PORT 1 FAIL**, see step 3.

Step 3:

Take the DB-15 male connector and solder a jumper wire to pins 2 and 11.

Once you have completed step 3, put the DB15 into the **PORT 1 SDLC** of the monitor and reset the monitor. The **Port 1 Fail** and **Fault LED** will clear.

