

Loops 101

07/29/2018 8:00 AM

Ben Luke

Ben Luke

- Electrical Engineer at Reno A&E
- Engineering Manager for the last 5 Years
- BS in Electrical Engineering from University of Nevada, Reno
- Worked at Reno A&E for 20 Years
- Circuit design, Tech Support

Why do we use loop detectors?

- Inductive Loop Detectors The Most Popular Detection System Since The 1960's – WHY?
- Precise and Predictable Area can be Defined for the Detection Zone
- Independent of Environment (Weather, Lighting & Sound)
- Most Accurate Technology Others Always Compared to Loops
- Most Reliable Technology when Installed Properly
- Holds Presence of Stationary Vehicles
- Detects what is Desired Licensed Vehicles
- No False Calls From Blowing Debris or Animals
- Cost Effective
- Simple Setup for Reliable Detection
- Not as subject to vanalism

There are 2 parts of the loop system

The Detector

The Loop

Part 1 The loop

What is a Loop

Starts with a wire

Wires and Fields

- When electricity (current) flows in a wire, a field is formed around the wire
- Right Hand Rule.
- Maxwell's Equations

$$\oint H \cdot dl = I + \varepsilon \frac{d}{dt} \iint E \cdot ds$$
$$\oint E \cdot dl = -\mu \frac{d}{dt} \iint H \cdot ds$$
$$\varepsilon \oiint E \cdot ds = \iiint q_v dv$$
$$\mu \oiint H \cdot ds = 0$$

IMISAI FORUM & EXPO

The field interacts with everything in its environment

- Includes all types of metal both:
 - Magnetic (like steel)
 - » Used to make motors and etc.
 - Non magnetic (like aluminum and copper)
 - » Typically used for sensors
- Other fields like cell phones, power lines, other loops, radio, etc.

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

EIMSA FORUM & EXPO

We don't usually like stray fields

- Elaborate ways to remove the field
 - Twisting wires
 - Ground wires
 - Cable shields
 - Coax cable
 - Fiber optics

EIMISA FORUM & EXPO

Loops make convenient use of the field

Since the field interacts with metal, we use it identify vehicles.

Field-metal interaction

- <u>Electricity</u> in a <u>wire</u> generates a <u>field</u>
- A <u>conductor</u> in a <u>field</u> generates <u>electricity</u>
- This is called Eddy Current

Vehicles over loops affect the field

- When a Vehicle passes over the loop the field generates eddy currents in the metal of the vehicle.
- The field must be large enough to interact with the vehicle.
- The detector recognizes the change and if it meets the right criteria, it creates a detection.
- Any metal will be detected; it does not need to be ferrous (conduct magnetic field like steel or iron)

TAMESA FORUM & EXPO

- Fold the wire in half
- Right Hand rule means that the field is in opposite direction on the two ends of the wire

• As the wires get closer together there is less room for the field to pass through the middle

• When the wire gets close enough together, some of the field from each end of the wire can no longer fit in between

- It is forced to go around the outside of the whole pair.
- These two portions combine together.
- Since they are equal and opposite when they add together they nullify each other

• The result is that the field shrinks in size.

 If the wires are touching the fields cancel completely Notes

ISA FORUM & EXPO

- The field isn't in the wire; it is in the surrounding material
- So wire gauge doesn't matter to create the field (current does)
- Effective Field can be canceled but the effort to try to create field still exists.

Loops: Field only where you want it

- Position Loop in lane
- Spread the wires apart to create field where we want it. (Loop)

ORLANDO, FL 2018

 Keep wires close together where we don't (Lead-In)

Loop Size

- Size the loop to create the field needed for the application
- Size affects not only length and width but also height.
 - The wire spacing is still in effect so height is limited by the closest wires (short leg)
 - <u>Detection Height = 2/3 the shortest leg</u>
 - For example a 6'x20' short leg is 6 * 2/3 = 4' detection height

Loop items not yet covered

- Inductance
- Resistance
- Twisting leads
- Turns
- Shapes
- Quadrapoles
- Power heads
- Ground wires
- Multiple loops
- Etc.
- Talk about after we discuss a little about detectors

Part 2 The detector

Connect loop to the detector

Loops in a perfect world

- Measure the amount of field that the vehicle is affecting
- Ignore all of the lead-in and just look at the Loop
- Loops would all be identical in shape and amount of lead-in
- Never interact with other external fields.

Detectors

Can't measure the field directly

Can measure the inductance of the loop/Lead-in system

Inductance is directly related to the Field

Can't tell the difference between lead-in inductance and Loop inductance

Inductance per Foot

TISTAT FORUM & EXPO

- Most loops are in Pavement (Concrete or Asphalt) and very close to the surface (Air)
- Pavement looks like air when forming a field.
- Wire in air has 11uH (Micro Henries) of inductance per 100ft (Foot)
- 1ft of lead-in has 2 feet of wire so:
- <u>100ft of Lead-In = 22uH of inductance</u>

Detectors and Inductance

ETMESA FORUM & EXPO

ΔL/L

- ΔL/L = Change of inductance/Actual inductance
- The loop and its surroundings don't move (it is buried in the street) so it always has a constant inductance.
- The only thing that can cause a change is a vehicle driving over the loop. (Careful with this—we will talk about it later)

Inductance Loop vs Lead-in

- The detector can't tell the difference between the Loop inductance and the Leadin inductance
- Just sees them added together.
- We want to have most of the inductance in the Loop not in the Lead-In (loop inductance > Lead-In Inductance)
- Have a name for this figure called:
- Loop Efficiency = Loop Inductance/Total inductance * 100%

We add or **Turns** | remove tur adjust the inductance remove turns to inductance of the loop system

What are Turns

- Each turn winds the wire around the loop one more time (3 turns are shown)
- If we don't have enough Inductance we can add turns to increase the inductance
- If we have more inductance in the Lead-In than in the loop, we can add turns to increase the inductance in the Loop.

How do we use Turns (Part 1)

Easier to explain with an example.

Given:

- 6x20 loop with 200 feet of lead-in.
- We know that we need the loop/lead-in to total between 50 and 1000uH
- We know that we want at minimum half of the inductance to be in the loop.

How do we use Turns (Part 2)

How do we use Turns (Part 3)

- Example a 6'x20' loop with 200' of lead-in
- Start with a guess of 2 turns
- 1) Loop Inductance = $(T^2 + T) \times (P) / 4$
 - $= (2^2 + 2) \times (6+6+20+20)/4$

• 2) Lead-In Inductance = 200×0.22

= 44uH – The Loop has more Inductance

- 3) Total Inductance = 78uH + 44uH = 122uH the Loop/Lead-In has a sufficient inductance.
- If we had tried to use 1 turn the loop inductance would only have been 26uH not enough compared to the 44uH of the Lead-In
- If we had tried to use 3 turns, the loop inductance would have been 156uH and the total would have been 200uH which would also be fine, but we would need to use more wire

Sensitivity

Level	ΔL/L % Change
1	0.64%
2	0.32%
3	0.16%
4	0.08%
5	0.04%
6	0.02%
7	0.01%
8	0.005%
9	0.0025%

Percentage of change necessary to detect a vehicle

Actual change seen = %Change x Loop Efficiency/(100*number of loops)

Reduce Sensitivity to reduce crosstalk
Sensitivity 2

- LCD detectors can be used to show the %Change
- Utilize the Deflectometer or Bargraph on LCD detectors

Vehicle Type	Typical Change on 6'x6' loop (No Lead-In)
Car	1.0%
Pick-up Truck	0.5%
Semi Cab	0.5%
Semi Trailer	0.125%
Motorcycle	0.008%
Bicycle	0.003% (in center of the loop)

Crosstalk

SA FORUM & EXPO

- The current that is flowing in the loop is actually an AC current which has a frequency.
- Loop Frequencies are usually in the range of 20-100kHz
- Loops that are positioned close to each other and that are running at the same frequency can interact with each other (cause noise, false calls, drops, etc.)
- Called Crosstalk.
- Usually is seen as random detections when there is no vehicle present

Frequency

- Detectors have the ability to change frequency for each channel.
- Adjust the frequency to be different between adjacent loops and you know you will never crosstalk.

Scanning

- Many detector operate in scanning mode
- They have 2 or 4 channels of detection but they cycle through each channel individually with the other channels off.
- Done very quickly but the more channels used, the longer the response time.
 - Usually not an issue at intersections, but could be for Speed measurement loops.
- This means that the adjacent channel is not running so it can't crosstalk.

Part 3 Additional Loop Design

Loop Designs

Loop types by usage

- Traffic Control Common Types:
 - Stop bar
 - Count/advance loop
 - Left turn
 - Right turn
 - Directional logic
 - Speed Pair
 - Classification

Multiple loops on one channel

- Depending on the type of loop chosen, a single loop may not cover a given detection area. Multiple loops can then be installed.
- Should always be wired in Series
 - Parallel can cause odd sensitivity issues
- Bring Lead-In to Cabinet

ISA FORUM & EXPO

 Recommend at least 1 channel per Lane

Splices

What not to do

What to do

- Proper Splice technique
- Strip the wire back
- Solder connections
- Heat shrink over all solder joints
- Insulate and waterproof with
 - Mastic tape
 - 3M splice kit
 - Etc.

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Lead-In

- Lead-in should be tightly coupled together.
- Twisting Lead-In is usually the easiest way to ensure tight coupling
- Twisting has added benefit of better rejection of unwanted external fields
- Ground/Shield wire is not desirable.
 - The nature of loops and their fields mean that there is no value in the ground.
 - Ground leads, if tied together with another loop, will induce crosstalk as a capacitive coupled signal.

Wire Type

IMSA specifies several types of wire

HTTP://WWW.IMSASAFETY.ORG/CABLESPECS.HTM

50-2	Polyethylene insulated, polyethylene jacketed, loop detector lead- in cable
51-1	Polyvinyl chloride insulated, nylon jacketed loop detector wire
51-3	Cross linked polyethylene insulated loop detector wire
51-5	Polyvinyl chloride insulated, nylon jacketed, loosely encased in a polyvinyl chloride or a polyethylene tube loop detector wire
51-7	Cross linked polyethylene insulated loosely encased in a polyvinyl chloride or a polyethylene tube loop detector wire

ORLANDO, FL 2018

Reno A&E recommends a narrow subset of that list.

In fact we only recommend 1 material: XLPE (cross-linked polyethylene).

Rebar

No mesh -4.5% Δ L/L

Loop mounted 2" above the mesh

-2.30% Δ L/L Signal loss 48%

Loop tied to the grid -0.90% $\Delta L/L$

Signal loss 80%

Loop tied between the grid

-1.50% $\Delta L/L\,$ Signal loss 66%

ORLANDO, FL 2018

Part 4 Loop Installation

Loop Types

Saw Cut

- Most common installation approach
- Locate and mark where you want the loop to be placed in the completed pavement
- Using a pavement cutting saw, cut a slot in the pavement to accept the wire
- Wrap the loop in the cut
- Seal the cut with sealant

Pave Over

- Newer option
- Prior to the final paving of a roadway, locate the loop in the roadbed (usually a preformed loop)
- Pave over the loop
- Loop is permanently installed in the roadway
- The loop must be able to withstand the paving process

Rules to follow for a good install

- 1) The installed loop must not move
- 2) Metal near the loop must not move
- 3) Protect the loop from water
 - Keep the loop in bottom of the saw slot
 - Use good sealant
- 4) Protect the loop from sharp points
 - Includes the pavement and tools
- 5) Don't splice the wire
- 6) Keep lead-in tightly coupled

Step 1: Mark Loop install location

Sawcut loop install

Cut the pavement

diatahanananananananananananan ar

State of the second

utt

HANA

Chamfer the corners

- This is for a prefabricated loop. Usually the saw is used to cut a 45 degree angle across any sharp corners
- The second (and in some cases 3rd) layer of insulation on prefabricated loops allows less ideal installations without damage to the loop.

MISTAT FORUM & EXPO

Make sure you remove any debris that could rub and damage the Loop

It is a good idea to blow out the slot with compressed air just prior to installing the loop

Clean out the slot

Install the loop

- The loop is placed into the saw cut and held down with ~ 1" pieces of backer rod to keep it in the bottom of the saw slot.
- IMPORTANT: Use a rounded tool to press the loop into the slot. Never use a sharp instrument on a loop.
- Twist the Lead-In Wires where they exit the Saw Slot all the way back to the detector

Prefabricated Loop Block

- Locate block location
- Drill or cut hole for block

EINISA FORUM & EXPO

Seal the loop

- Make multiple passes if necessary to ensure that the sealant completely fills the gap
 - Any gap remaining will be subject to freeze thaw cycles, and water intrusion

Case for Prefabricated loops

- A prefabricated Loop is Stronger than a Standard Loop
 - Multiple layers of insulation
- Can use a shallower sawcut
- High temperature materials allow for better sealants
- Cost Effective
- Easy to handle, ship, and install
- Comes with the correct number of turns for the size of the loop
- Sized so that it can be installed in imperfect loop slots

INISA FORUM & EXPO

• More inductance in the loop due to tight coupling

- Promotes longer Roadway life
 - No Saw cuts
 - No Sealant to fail

Prefabricated Pave over loop

Asphalt prefabricated Loop Install instructions

Step 1: Tape down loop or use corner brackets

Step 2: Cover loop to protect it from the paver

Step 3: Pave over loop. Compress as usual.

1

8500

No Saw Cuts

mi

08

Tep

....

LOW DECK

-B

Preformed Loop Concrete install

Raise loop into the pour

Part 5 Loop Diagnostics

Testing Tools

- Meter
- LCD detector
 - Buzzer
 - Inductance
 - ΔL/L
 - Fault type
 - Fault History (count)
- Meg-Ohm Meter
- Loop Finder

EXPO

Measurements

- Install records
 - Loop Location
 - Loop Resistance
 - Detector will work with <10
 Ohms but high resistance could indicate questionable joints/wire
 - Loop Inductance
 - Loop Meg-Ohm reading
 - Loops will work with a single point fault to EGND. But bad insulation is an indication of other potential damage
 - Prefabricated loops have been tested for >10Gig Ohms of insulation resistance
 - Loop should have minimum 50Meg Ohms of resistance to EGND

Troubleshooting Loop Failure

1) Is the issue in the detector or the loop

- Detector Fault information
- Swap detectors does the issue follow loop or detector

2) If in the loop – Check:

- Are the loop joints bad
- Is the pavement in good condition

ORLANDO, FL 2018

• Is the Lead-In tightly coupled

3) Disconnect loops in series or parallel, Check each individually

- Does the loop work on the detector
- What is the inductance
- What is the resistance
- What is the Meg-Ohm Reading

EIMSA FORUM & EXPO

Troubleshooting Crosstalk

1) Crosstalk usually comes in pairs identify the loops with the issue

- If possible physically locate the loop
- Crosstalk could be in lead-in not in loops
- Pair may be hidden with one loop of lower sensitivity or in a different cabinet

2) Adjust the frequency of crosstalking loops

• Be careful that the issue doesn't jump to other adjacent loops

3) If issues persist try an alternative solution

- Connect both loops to single scanning detector
- Reduce the sensitivity to reduce the issue

ORLANDO, FL 2018

EIMISA FORUM & EXPO

Covered a lot, Loops are actually very simple

EIMSA FORUM & EXPO

Ways to Simplify

Available on our Website www.renoae.com

2 Let us do the Math for you

Use a Prefabricated loop and we will make all of the best choices for you. Materials, size, turns, and testing will already have been done. Plus you get a 10 year warranty.

FORUM & EXPO

ORLANDO, FL 2018

Things to Remember

- Detection Height = 2/3 shortest leg
- Depth of loop subtracts from Detection Height
- Lead-in cable 22uH/100ft
- Typical detector Range 50-1000uH inductance
- Loop Efficiency = Loop inductance/total inductance *100%
- <u>Loop Inductance</u> = (Turns² + Turns) x (Perimeter) /
- <u>Lead-in Inductance</u> = Lead-In Length * 0.22

Contact Information

Ben Luke Engineering Manager Reno A&E Direct: (775)870-4495 Cell: (775)376-2102 Email: <u>benl@renoae.com</u>

Jennifer Perry Inside Sales Reno A&E Direct: (775)870-4496 Email: jenniferp@renoae.com Carl Zabel Parking and Access Sales Manager Reno A&E Cell: (602) 321-2969 Direct: (775) 870-4500 Email: <u>carlz@renoae.com</u>

Reno A&E Main Office Office: (775)826-2020 Quotes: <u>sales@renoae.com</u> Web Site: <u>www.renoae.com</u>

